

Oscillator Theory - State Fransition Madrix

& Flaguet Theorem

Yve-requisites

- Eigenvalues, eigenvectors. i) Linear Algebra (3Blue 1 Browns - Linear tromsformation.)
Series on linealge - Matrix decompositions.

(Eigendecomp, SVD)

ii) Differential Egns. - Vector calculus in R.

Mote: Not discussing Proofs.

Time varying model. $\vec{n} = \vec{A}(t)\vec{n}$ $\vec{n} = A(t)\vec{n}$ $\vec{n} = A(t)\vec{n}$ $\vec{n} = A(t)\vec{n}$ $\vec{n} = A(t)\vec{n}$ $\vec{n} = A(t)\vec{n}$ $\begin{bmatrix} \frac{\partial V}{\partial t} \\ \frac{\partial I}{\partial t} \end{bmatrix} = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \begin{bmatrix} V \\ I \end{bmatrix}$

Describing how a vector of changes with time.

Here, $\vec{x} \in \mathbb{R}^n \times \vec{x} (t_0) = \vec{x}_0$. > Under Certain (general) conditions on Alt), it can be shown that the solutions of Eq.() Span Rⁿ. spom R. (Eq.O) can be interpreted as a generating eqn. Why do we case? Oscillators obey 2nd order NDE.

So it is important to study the dynamics of such.

Systems in the of differential equations > Let $\beta(t,t_0,\overline{u_0})$ be the set of solutions of = \$ (t, to, \$\overline{\chi_0}\) spans Rⁿ. > 91 ¿xi3 is a basis for R? => \$\frac{1}{2}(t, t_0, \vec{u}_i)\$
is also a basis for Rn + t. $\psi_{i}(t) = \overline{\beta}(t,t_{0},\overline{\alpha_{i}})$

Def: Fundamental Madrix $\overline{X} = \begin{bmatrix} \Psi_1(t) & \Psi_2(t) & \cdots & \Psi_n(t) \end{bmatrix}$ Def: State Tromsition Matrix If $(Y; lt) = \beta(t, to, \hat{\alpha};)$, then \bar{X} is the STM. where $\hat{\chi}_{i} = [0,0,...,0,1,0,...,0]$ canonical basis vectors. STM: Madrix whose columns have evolved from the comonical basis vectors as to t. $\Phi(t,t_0) = \left| \Phi(t,t_0,\hat{n}_1) \Phi(t,t_0,\hat{n}_2) \cdots \right|$ > It is the fundamental characterization of how Ego "warps" R" with time. > Therefore, to know where an arbidrary do vector No went from to t, simply do $\vec{\beta}(t,t_0,\vec{\chi}_0) = \vec{\Phi}(t,t_0)\vec{\chi}_0$

In hinear Inhomogeneous DE

$$\vec{x}(t) = \vec{A}(t) \vec{x}(t) + \vec{b}(t)$$
; $\vec{x}(t_0) = \vec{x}_0$.

Solm is given by

 $\vec{t}(t_0, \vec{x}) = \vec{A}(t_0, \vec{x}_0) + \vec{b}(t_0, \vec{x}_$

 $\Rightarrow \Phi(t+T,t_0) = \Phi(t,t_0)$? No (ingeneral)

> What can we say about the periodic properties

Floquet Theorem

$$\Phi(t,s) = U(t) D(t-s) V(s) - 2$$

where U(t) & V(s) are T-periodic and they satisfy U(t)= V'(t) and $Dlt-s) = diag \left[exp(\mu,(t-s)), ..., exp(\mu_n(t-s))\right]$ ξμίζ one called Floquet (characteristic) exponents; λ ; = exp(μ iT) are called Floquet (characteristic) muttipliers.

Empanding Eq.D

Empanding Eq. (2)
$$\emptyset(t,s) = \sum_{i=1}^{n} exp(\mu_i(t-s)) u_i(t) v_i^{T}(s)$$
3)

Where Ui(t) are columns of U & V;T(s) one

Furthermore, Euigh Evily each spom 18" & Satisfy V; T(t) Uj(t) = Sij

Biorthogonality Relation