


EM2 -[IniteElement Methods
'

F(4)=&Y. PPds - Ke when
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Y is a wavefunction & F(N)
is

minimum.

FEM- Variational (Rayleigh Ritz)↳ Differential (Galerkin's)
.

- Discretizing the 2D geometry
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triangular mesh.
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> Each triangle - element
"e" has

j = 3
3 nodes"j"

e

j = 1 j = ュ

> P is discretized into a set of
Unknowns at each

mode of the
mesh .

> We use a "linear interpolation"
.
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by mesh geometry.
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H) = 0 gives YPe vector of odae

quantities
which closely approximates

the eigen tu.

↓ hong derivation .

ǒ ψ = k㎡ B Ψ → Finite Element
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\ Equation
Mass

Stiffness matrix
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>I has many repeated
elements so we

need to reduce this to remove repeated modes .
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Generalized Eigenvalue
Problem.

Computing O) = 0
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= minimize ITIT subject to

↑B -1 = 0 - Constrained opt.
problem. -> Method of Lagrange
multipliers.
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Tü() = 2ÄT if A is a

symmetric matrix.
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EEM (Galerkin'sMethod)
-Diff .

Eqn.

L ( φ) = f↳ excitation { wavepnt
↑↑unknown field.
Differential operator {HH TE}

Approximate & in a function
basis

.

N -
unknown

f : E 50j
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1
↳ basis functions
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Let L()- f = t 0

Weighted
Veridual Ri

= SWilda
→ ↳ weighting

functions.



Ri=0 -- N equations & Nunknowns
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& Vectorbasic functions with a
tetrahedral

mesh . - (Nédélec basis frs.)
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